publications

publications by categories in reversed chronological order. generated by jekyll-scholar.

2024

  1. RAD-DINO: Exploring Scalable Medical Image Encoders Beyond Text Supervision
    Fernando Pérez-Garcı́a, Harshita Sharma, Sam Bond-Taylor, Kenza Bouzid, Valentina Salvatelli, Maximilian Ilse, Shruthi Bannur, Daniel C Castro, Anton Schwaighofer, Maria Teodora Lungren, Noel Codella, Stephanie L. Hyland, Javier Alvarez-Valle, and Ozan Oktay
    arXiv:2401.10815, 2024
  2. A comprehensive ml-based respiratory monitoring system for physiological monitoring & resource planning in the icu
    Matthias Hüser, Xinrui Lyu, Martin Faltys, Alizée Pace, Marine Hoche, Stephanie Hyland, Hugo Yèche, Manuel Burger, Tobias M Merz, and Gunnar Rätsch
    medRxiv, 2024
  3. Compatibility in Missing Data Handling Across the Prediction Model Pipeline: A Simulation Study
    Antonia Tsvetanova, Matthew Sperrin, David Jenkins, Niels Peek, Iain Buchan, Stephanie Hyland, and Glen Martin
    In MEDINFO 2023—The Future Is Accessible, 2024
  4. Multimodal healthcare AI: identifying and designing clinically relevant vision-language applications for radiology
    Nur Yildirim, Hannah Richardson, Maria Teodora Wetscherek, Junaid Bajwa, Joseph Jacob, Mark Ames Pinnock, Stephen Harris, Daniel Coelho De Castro, Shruthi Bannur, Stephanie L Hyland, Pratik Ghosh, Mercy Ranjit, Kenza Bouzid, Anton Schwaighofer, Fernando Pérez-García, Harshita Sharma, Ozan Oktay, Matthew Lungren, Javier Alvarez-Valle, Aditya Nori, and Anja Thieme
    In Proceedings of the CHI Conference on Human Factors in Computing Systems, 2024
  5. Challenges for Responsible AI Design and Workflow Integration in Healthcare: A Case Study of Automatic Feeding Tube Qualification in Radiology
    Anja Thieme, Abhijith Rajamohan, Benjamin Cooper, Heather Groombridge, Robert Simister, Barney Wong, Nicholas Woznitza, Mark Ames Pinnock, Maria Teodora Wetscherek, Cecily Morrison, Hannah Richardson, Fernando Pérez-García, Stephanie L. Hyland, Shruthi Bannur, Daniel C. Castro, Kenza Bouzid, Anton Schwaighofer, Mercy Ranjit, Harshita Sharma, Matthew P. Lungren, Ozan Oktay, Javier Alvarez-Valle, Aditya Nori, Stephen Harris, and  Jacob
    arXiv:2405.05299, 2024
  6. MAIRA-2: Grounded radiology report generation
    Shruthi Bannur, Kenza Bouzid, Daniel C Castro, Anton Schwaighofer, Anja Thieme, Sam Bond-Taylor, Maximilian Ilse, Fernando Pérez-Garcı́a, Valentina Salvatelli, Harshita Sharma, Felix Meissen, Mercy Ranjit, Shaury Srivastav, Julia Gong, Noel C.F. Codella, Fabian Falck, Ozan Oktay, Matthew P. Lungren, Maria Teodora Wetscherek, Javier Alvarz-Valle, and Stephanie L. Hyland
    arXiv:2406.04449, 2024
  7. An X-Ray Is Worth 15 Features: Sparse Autoencoders for Interpretable Radiology Report Generation
    Ahmed Abdulaal, Hugo Fry, Nina Montaña-Brown, Ayodeji Ijishakin, Jack Gao, Stephanie Hyland, Daniel C Alexander, and Daniel C Castro
    arXiv:2410.03334, 2024
  8. Medimageinsight: An open-source embedding model for general domain medical imaging
    Noel C. F. Codella, Ying Jin, Shrey Jain, Yu Gu, Ho Hin Lee, Asma Ben Abacha, Alberto Santamaria-Pang, Will Guyman, Naiteek Sangani, Sheng Zhang, Hoifung Poon, Stephanie Hyland, Shruthi Bannur, Javier Alvarez-Valle, Xue Li, John Garrett, Alan McMillan, Gaurav Rajguru, Madhu Maddi, Nilesh Vijayrania, Rehaan Bhimai, Nick Mecklenburg, Rupal Jain, Daniel Holstein, Naveen Gaur, Vijay Aski, Jenq-Neng Hwang, Thomas Lin, Ivan Tarapov, Matthew Lungren, and Mu Wei
    arXiv:2410.06542, 2024
  9. PadChest-GR: A Bilingual Chest X-ray Dataset for Grounded Radiology Report Generation
    Daniel C. Castro, Aurelia Bustos, Shruthi Bannur, Stephanie L. Hyland, Kenza Bouzid, Maria Teodora Wetscherek, Maria Dolores Sánchez-Valverde, Lara Jaques-Pérez, Lourdes Pérez-Rodríguez, Kenji Takeda, José María Salinas, Javier Alvarez-Valle, Joaquín Galant Herrero, and Antonio Pertusa
    arXiv:2411.05085, 2024
  10. MAIRA-Seg: Enhancing Radiology Report Generation with Segmentation-Aware Multimodal Large Language Models
    Harshita Sharma, Valentina Salvatelli, Shaury Srivastav, Kenza Bouzid, Shruthi Bannur, Daniel C. Castro, Maximilian Ilse, Sam Bond-Taylor, Mercy Prasanna Ranjit, Fabian Falck, Fernando Pérez-García, Anton Schwaighofer, Hannah Richardson, Maria Teodora Wetscherek, Stephanie L. Hyland, and Javier Alvarez-Valle
    arXiv:2411.11362, 2024

2023

  1. Learning to Exploit Temporal Structure for Biomedical Vision-Language Processing
    Shruthi Bannur*Stephanie Hyland*, Qianchu Liu, Fernando Pérez-García, Maximilian Ilse, Daniel C. Castro, Benedikt Boecking, Harshita Sharma, Kenza Bouzid, Anja Thieme, Anton Schwaighofer, Maria Wetscherek, Matthew P. Lungren, Aditya Nori, Javier Alvarez-Valle, and Ozan Oktay
    In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023
  2. Compositional Zero-Shot Domain Transfer with Text-to-Text Models
    Fangyu Liu, Qianchu Liu, Shruthi Bannur, Fernando Pérez-García, Naoto Usuyama, Sheng Zhang, Tristan Naumann, Aditya Nori, Hoifung Poon, Javier Alvarez-Valle, Ozan Oktay, and Stephanie L. Hyland
    Transactions of the Association for Compuational Linguistics, 2023
  3. Framing machine learning opportunities for hypotension prediction in perioperative care: a socio-technical perspective: Socio-technical perspectives on hypotension prediction
    Pratik Ghosh, Karen L Posner, Stephanie L Hyland, Wil Van Cleve, Melissa Bristow, Dustin R Long, Konstantina Palla, Bala Nair, Christine Fong, Ronald Pauldine, Monica S. Vavilala, and Kenton O’Hara
    ACM Transactions on Computer-Human Interaction, Sep 2023
  4. Exploring the Boundaries of GPT-4 in Radiology
    Qianchu Liu, Stephanie Hyland, Shruthi Bannur, Kenza Bouzid, Daniel C. Castro, Maria Teodora Wetscherek, Robert Tinn, Harshita Sharma, Fernando Pérez-García, Anton Schwaighofer, Pranav Rajpurkar, Sameer Tajdin Khanna, Hoifung Poon, Naoto Usuyama, Anja Thieme, Aditya V. Nori, Matthew P. Lungren, Ozan Oktay, and Javier Alvarez-Valle
    In Conference on Empirical Methods in Natural Language Processing, Sep 2023
  5. MAIRA-1: A specialised large multimodal model for radiology report generation
    Stephanie L Hyland, Shruthi Bannur, Kenza Bouzid, Daniel C Castro, Mercy Ranjit, Anton Schwaighofer, Fernando Pérez-Garcı́a, Valentina Salvatelli, Shaury Srivastav, Anja Thieme, Noel Codella, Matthew P. Lungren, Maria Teodora Wetscherek, Ozan Oktay, and Javier Alvarez-Valle
    arXiv:2311.13668, Sep 2023

2022

  1. Intraoperative prediction of postanaesthesia care unit hypotension
    Konstantina Palla, Stephanie L Hyland, Karen Posner, Pratik Ghosh, Bala Nair, Melissa Bristow, Yoana Paleva, Ben Williams, Christine Fong, Wil Van Cleve, Dustin R Long, Ronald Pauldine, Kenton O’Hara, Kenji Takeda, and Monica S Vavilala
    British Journal of Anaesthesia, Sep 2022
  2. Predicting the impact of treatments over time with uncertainty aware neural differential equations.
    Edward De Brouwer, Javier Gonzalez, and Stephanie Hyland
    In International Conference on Artificial Intelligence and Statistics, Sep 2022
  3. Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing
    Benedikt Boecking, Naoto Usuyama, Shruthi Bannur, Daniel C. Castro, Anton Schwaighofer, Stephanie Hyland, Maria Wetscherek, Tristan Naumann, Aditya Nori, Javier Alvarez-Valle, Hoifung Poon, and Ozan Oktay
    In European Conference on Computer Vision, Sep 2022
  4. Leveraging electronic health records for data science: common pitfalls and how to avoid them
    Christopher M Sauer, Li-Ching Chen, Stephanie L Hyland, Armand Girbes, Paul Elbers, and Leo A Celi
    The Lancet Digital Health, Sep 2022
  5. Looking for Out-of-Distribution Environments in Multi-center Critical Care Data
    Dimitris Spathis, and Stephanie L Hyland
    arXiv:2205.13398, Sep 2022

2021

  1. Temporal pointwise convolutional networks for length of stay prediction in the intensive care unit
    Emma Rocheteau, Pietro Liò, and Stephanie Hyland
    In Proceedings of the conference on health, inference, and learning, Sep 2021
  2. Sociodemographic and clinical features predictive of SARS-CoV-2 test positivity across healthcare visit-types
    Jimmy Phuong, Stephanie L Hyland, Stephen J Mooney, Dustin R Long, Kenji Takeda, Monica S Vavilala, and Kenton O’Hara
    Plos one, Sep 2021
  3. Missing data was handled inconsistently in UK prediction models: a review of method used
    Antonia Tsvetanova, Matthew Sperrin, Niels Peek, Iain Buchan, Stephanie Hyland, and Glen P Martin
    Journal of Clinical Epidemiology, Sep 2021

2020

  1. Early prediction of circulatory failure in the intensive care unit using machine learning
    Stephanie L Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Thomas Gumbsch, Cristóbal Esteban, Christian Bock, Max Horn, Michael Moor, Bastian Rieck, Marc Zimmermann, Dean Bodenham, Karsten Borgwardt, Gunnar Rätsch, and Tobias M. Merz
    Nature medicine, Sep 2020
  2. Machine learning for health (ML4H) 2020: Advancing healthcare for all
    Suproteem K Sarkar, Subhrajit Roy, Emily Alsentzer, Matthew BA McDermott, Fabian Falck, Ioana Bica , Griffin Adams, Stephen Pfohl, and Stephanie L Hyland
    In Machine Learning for Health, Sep 2020

2019

  1. Unsupervised extraction of phenotypes from cancer clinical notes for association studies
    Stefan G Stark, Stephanie L Hyland, Melanie F Pradier, Kjong Lehmann, Andreas Wicki, Fernando Perez Cruz, Julia E Vogt, and Gunnar Rätsch
    arXiv:1904.12973, Sep 2019
  2. A Bayesian Nonparametric Approach to Discover Clinico-Genetic Associations across Cancer Types
    Melanie F Pradier, Stephanie L Hyland, Stefan G Stark, Kjong Lehmann, Julia E Vogt, Fernando Perez-Cruz, and Gunnar Rätsch
    bioRxiv, Sep 2019
  3. An empirical study on the intrinsic privacy of SGD
    Stephanie L Hyland, and Shruti Tople
    arXiv:1912.02919, Sep 2019

2018

  1. Improving clinical predictions through unsupervised time series representation learning
    Xinrui Lyu, Matthias Hueser, Stephanie L Hyland, George Zerveas, and Gunnar Rätsch
    arXiv:1812.00490, Sep 2018

2017

  1. Real-valued (medical) time series generation with recurrent conditional gans
    Cristóbal Esteban, Stephanie L Hyland, and Gunnar Rätsch
    arXiv:1706.02633, Sep 2017

2016

  1. A generative model of words and relationships from multiple sources
    Stephanie L Hyland, Theofanis Karaletsos, and Gunnar Rätsch
    In Association for the Advancement of Artificial Intelligence, Sep 2016
  2. Knowledge transfer with medical language embeddings
    Stephanie L Hyland, Theofanis Karaletsos, and Gunnar Rätsch
    arXiv:1602.03551, Sep 2016
  3. Learning Unitary Operators with Help From \mathfraku(n)
    Stephanie L Hyland, and Gunnar Rätsch
    In AAAI 2017, Sep 2016
  4. Neural document embeddings for intensive care patient mortality prediction
    Paulina Grnarova, Florian Schmidt, Stephanie L Hyland, and Carsten Eickhoff
    arXiv:1612.00467, Sep 2016

2015

  1. Identification of active transcriptional regulatory elements from GRO-seq data
    Charles G Danko, Stephanie L Hyland, Leighton J Core, Andre L Martins, Colin T Waters, Hyung Won Lee, Vivian G Cheung, W Lee Kraus, John T Lis, and Adam Siepel
    Nature Methods, Sep 2015
  2. Large scale sentence clustering from electronic health records for genetic associations in cancer
    Melanie F Pradier, Stefan Stark, Stephanie Hyland, Julia E Vogt, and Gunnar Rätsch
    In Machine Learning for Computational Biology Workshop in Neural Information Processing Systems, Sep 2015